A comprehensive database of amphibian heat tolerance


Journal article


Patrice Pottier, Hsien‐Yung Lin, R. Oh, P. Pollo, A. N. Rivera-Villanueva, J. Valdebenito, Yefeng Yang, Tatsuya Amano, Samantha Burke, S. Drobniak, S Nakagawa
Scientific Data, 2022

Semantic Scholar DOI PubMedCentral PubMed
Cite

Cite

APA   Click to copy
Pottier, P., Lin, H. Y., Oh, R., Pollo, P., Rivera-Villanueva, A. N., Valdebenito, J., … Nakagawa, S. (2022). A comprehensive database of amphibian heat tolerance. Scientific Data.


Chicago/Turabian   Click to copy
Pottier, Patrice, Hsien‐Yung Lin, R. Oh, P. Pollo, A. N. Rivera-Villanueva, J. Valdebenito, Yefeng Yang, et al. “A Comprehensive Database of Amphibian Heat Tolerance.” Scientific Data (2022).


MLA   Click to copy
Pottier, Patrice, et al. “A Comprehensive Database of Amphibian Heat Tolerance.” Scientific Data, 2022.


BibTeX   Click to copy

@article{patrice2022a,
  title = {A comprehensive database of amphibian heat tolerance},
  year = {2022},
  journal = {Scientific Data},
  author = {Pottier, Patrice and Lin, Hsien‐Yung and Oh, R. and Pollo, P. and Rivera-Villanueva, A. N. and Valdebenito, J. and Yang, Yefeng and Amano, Tatsuya and Burke, Samantha and Drobniak, S. and Nakagawa, S}
}

Abstract

Rising temperatures represent a significant threat to the survival of ectothermic animals. As such, upper thermal limits represent an important trait to assess the vulnerability of ectotherms to changing temperatures. For instance, one may use upper thermal limits to estimate current and future thermal safety margins (i.e., the proximity of upper thermal limits to experienced temperatures), use this trait together with other physiological traits in species distribution models, or investigate the plasticity and evolvability of these limits for buffering the impacts of changing temperatures. While datasets on thermal tolerance limits have been previously compiled, they sometimes report single estimates for a given species, do not present measures of data dispersion, and are biased towards certain parts of the globe. To overcome these limitations, we systematically searched the literature in seven languages to produce the most comprehensive dataset to date on amphibian upper thermal limits, spanning 3,095 estimates across 616 species. This resource will represent a useful tool to evaluate the vulnerability of amphibians, and ectotherms more generally, to changing temperatures. Measurement(s) CTmax • Critical thermal maximum • LT50 • Median lethal temperature • Thermal tolerance • Thermal limits Technology Type(s) experimental Factor Type(s) Location • Conservation status • Environmental temperature • Laboratory temperatures • Body size • Ontogeny • Methodological variation Sample Characteristic - Organism Amphibians • Caudata • Amphibia • Frogs • Salamanders • Newts Sample Characteristic - Environment natural environment • laboratory environment Sample Characteristic - Location Global


Share

Tools
Translate to